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Base-Promoted Efficient Synthesis of 2,3-Disubstituted Benzofurans ZHANG Jin-kun'? LI Zhi-yue®, QIU
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University, Yichang 443002, China; 2. Yichang Central People's Hospital, Yichang 443003, China; 3. Hubei Key Laboratory of
Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University,
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Abstract: Benzofuran is a heterocyclic structural unit that occurs widely in natural products, drugs, pesticides, and functional
materials, and it is used as a potential synthetic building block in preparing various biologically active molecules. The synthesis of
benzofuran cores is well-established, but efficient general methods of synthesizing 2,3-disubstituted benzofurans remain relatively
limited. Several reported methods often suffer from challenges, such as harsh reaction conditions, cumbersome steps, and poor
substrate generalities, and thus, developing a facile, mild, efficient, operationally simple synthetic method is necessary. This study
designed a method of synthesizing 2,3-disubstituted benzofuran derivatives using easily prepared o-hydroxychalcones and
commercially available y-bromocrotonates as starting materials. The reaction proceeded via a one-pot multistep tandem process
under mildly basic conditions. This strategy avoided the use of expensive metal catalysts and harsh reaction conditions,
demonstrating a good functional-group compatibility and operational simplicity. This synthetic strategy provided a novel approach
for use in efficiently synthesizing 2,3-disubstituted benzofuran derivatives. It also laid a solid foundation for further in-depth research
into their biological activities and material properties, displaying potential for application in the fields of medicinal chemistry and
organic synthesis.
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IR RAL & W2 — S B F I A3
WaEY), HAE AT T HZRERETE, 5
FELGWITIE A A2 G AR RER 2 S U B AT 10
IEDS, BRI O EER T L R R R
ARG . L, 2R E R3] TR AT
IR, IFHITR T — R AR O,
BEAL, IR IFIRIR F A By th e — bl HL A R
Ty R ARZ R IARTNEED T IR0, fE
RZ W FF R RAL S H - 2,3- B IF IR
[FIRER DL LS A YE . PRI, H & e
b IE AR B B AR I ke B ey, AT CAR SR 5

TR RE AR B b, HLER Oy S B kA B H 4 o

#5101 Suresh £ AT 2019 FE4iRiE 1 A2t R 205z
FERFERR R AR PR S R B T Y p- 1R AR 2 IR I
IR, BT 2,3-ZHURCR IR R A . 2R
M, 1% SR 75 A8 =ik sV 7R N- 5 bk s e
(NMP), FH7E 120 °C Wil FEEAT, RN ZFAFEN
A, JE PSR T R BEFIA G EbR . B, K
JESRAIRAN BRAE TRE & Tk R A R
5 e, T ARREAEIEH T op- A
FR02141 YRR B SRR RS 112 5 I R R B 55 T
TH PRI 50 SR AN S IR A . FRATT AR 2,3- AR
TR IR A0 S W] T 515 (2l B & R B S
y-IRA I SRR BR AR 2 T e i ol SRR
AW IS T B AR RN, A SCHRGE T —
PRI I S AR BRI S - A SRR Y —
IR, mAE R — R 2,3- BRI
R Bt AeLy/R

1 SERF4
L1 FEERSEH
ME204E % 8 ¥ 4 #Hr R *F & &
METTLER-TOLEDO £ fR A #]); PL-MD-5 B4
aitk 7245 AbtiRERHARARD; ZNCL-B &
BRI TR (LT T AR A IR FTEAFD;
EYELA SB-1100 BUJigft 284 ( LR A
FRA R SHZ-D(I) BUEIF K2 i A8 4R COFf
NSRS IR AT]D; ZF-1A B =&
1 CEGBE DT R A D GZX-9240MBE
RIH G X HRAE (RIS AT R 2 A BT 1
#%)7); DZF-6020 8723 T H4H (Bl —1EREAX
PR AT Bruker AV 400 MHz U G LRI
(¥ Bruker AF]).

SRR, IR E TR RS (LIRS
EEARH AR AT — 55 AN LHE(DIPEA).
1,8- Z &I IA[5.4.0]F —Fk-7-4 (DBU). N,N-—
L % 1% (DMF) . — F IEAB(DMSO) ( i3 7
MAEMBHE A AR AT Bk (LilgEEEE
R R A RAFD; $hER . IRERE . S AN
RN N5 TKOEE. TOKBRIREN (HE 254
BRI PR A 7D s A MIEE(PE) . LR LBE(EA).
“AHBEDCM). T (Acetone).  PUE LI (THF)

g, BRI TR AR AR BT
TN oM 4l i RIE A e Ve 7 4tk
RGN,

AR I P Ak ey S PR A 81 I e gk — 2 4l RV AT
BHiEEMH. FRERR (GF254, #H 5%k &M
KA RAFD 72 @ik (TLO) Wi, @il
il CRLFE A 200~300 H , 5 itk THRAFD
BHATA LB, BV (G EEPE)) - V(LR &
BE(EA)) : V (=S E(DCM)) Pt -

1.2 L7k
1.2.1 APFREEAURE (la) & Rk 2k
B 1 ARREEARER 1a %
Fig.1 Preparation of o-hydroxychalcone la

B L IARE -, KIRIIA 30 mL 4BE.
266.5 mg (2.2 mmol) & f2E 2K % 240.3 mg (2.0
mmol) 7K i, SR 5 218 i\ 4.0 mL(40%)KOH.
TREWAE IR I HRE 12 he RONV5ER (1 TLC W
WD J5, BEMEIEMA 1 mol/L HCl, ¥ &M
pH &k, dEEAERTSH T, 443 336.4 mg
FEPNARFRFE AT IR, PR 56%, e, P
(R R 5 SCR[ 1814 — B
1.2.2  (E)-4-[2-((E)-3-%AR-3- 2R JL 5 -1- 4 - 1- 25 ) 2R
AT 2R IR A R (32 B &

o Br\/\/COZMe

40% KOH
_ >

EtOH, rt, 12 h
56% yield

.0 equi X
~ A Cszcoj equiv) th
s
oH MeCN, rt, 2 h o/\/\cone
90% yield

1a 3a’
B2 e 3a' &
Fig.2 Preparation of compound 3a'
[ S P I 575 RN 1.0 mL ZUJf
224 mg (0.1 mmol) 4BFEHEE/KEH. 32.6 mg (0.1

mmoD) B FRE , SR LM 17.9 mg (0.1 mmol)



IRRE SRR IRAMESETHSE 2 he &
NS (FH TLC WD J&, EAVIMABAREIL
B, CRROTEFER. 7l ToKBREREN T4
G IE VAR, R 2957, 4 ENT 98 (V (PE):
V (EA) =20:1)75%]29.0 mg th &%) 3a', 723 90%,
A [H A . 'THNMR (CDCl3,400 MHz), 6 8.17 (d, 1H,
J=15.9 Hz); 8.04 (d, 2H, J = 7.2 Hz); 7.70 (d, 1H, J
=7.6 Hz); 7.64 (d, 1H, J = 15.9 Hz); 7.60 (d, 1H, J =
7.2 Hz); 7.53 (t, 2H, J = 7.4 Hz); 7.42 ~ 7.35 (m, 1H),
7.16 (dt, 1H, J = 15.8, 4.0 Hz); 7.06 (t, 1H, J = 7.5
Hz); 6.91 (d, 1H, J = 8.3 Hz); 6.23 (d, J = 15.8 Hz,
1H), 4.84 (dd, J = 4.0, 1.6 Hz, 2H), 3.79 (s, 3H).
BCNMR (CDCl3,100 MHz) § 191.1, 166.4, 157.0,
142.1, 140.0, 138.4, 132.6, 131.7, 129.3, 128.61,
128.55, 124.3, 123.3, 122.1, 121.6, 112.4, 66.9, 51.8.
HRMS (ESI), C20H1sO4Na" SEMME GHHFEAE) |, m/z:
345.1097(345.1091)[M+Na]*.
1.2.3  (E)-3-[3-Q2-FAC-2-9K 2. 3)-2,3- & K IFk
IR -2-JE | R R I A 1 (3a™) IRl 2%

(o] Ph

A 8,005 (1.0 equiv)
CEO\)/\;\COZMe Mes(;’;}a’ ryti’e|1d2 " @Z;Qcozm
3a’' 3a"
B3 a3l
Fig.3 Preparation of compound 3a"
[ JE R I N 75 AR UIN 1.0 mL L
32.2 mg(0.1 mmoDAL &4 3a'.32.6 mg(0.1 mmol)
BRI . JRESYIIE IR T HEFE 12 he RN SERL (H
TLC WD J&5, IREVEE A SIS,
LR CTREER . il KRR TR SIFEHL
M, ISR R, 2N & (V (PE): V (EA)
=20:1) 193] 28.9 mg (L &H) 3a". =3 89%, T
[&i /4 . 'THNMR (CDCl5,400 MHz), 6:7.96 ~7.90 (m,
2H); 7.63 ~7.56 (m, 1H); 7.50 ~7.44 (m, 2H); 7.22
~7.15 (m, 2H); 6.96 ~ 6.86 (m, 3H); 6.18 (dd, 1H,J
=15.7,1.6 Hz); 5.61 (ddd, 1H, J=8.6, 5.3, 1.7 Hz);
4.36 (td, 1H, J= 8.6, 6.1 Hz); 3.76 (s, 1H); 3.64 (s,
3H); 3.29 (dd, 2H, J = 7.2, 49 Hz). BCNMR
(CDCl3,100 MHz), o: 198.3, 166.2, 158.7, 142.8,
136.6, 133.6, 129.5, 129.0, 128.8, 128.2, 124.6, 123.1,
121.3, 110.1, 83.9, 51.8, 41.1, 40.2. HRMS (ESI),
CyoHisO4Na®, 52 W H ¢ i & H D) , m=z
345.1097(345.1103) [M + Na]*s
1.2.4  23-“HURZEIFIRIE (3) HfH %

o Cs,C0, 20 80U Re
@[\)LRZ*'Br/\/\CO;R‘ DBU (1.0 equiv) RB,\’/\ {
OH MeCN, rt, 12 h o
1 2 3 CO,R!
B4 23-ZHURHEFENRIRE 3 ) %

Fig.4 Preparation of 2,3-disubstituted benzofuran 3

4 0.1 mmol £8F2FE/RE. 1.0 mL £, 0.2
mmol Cs:COs MAZI R NEFfE, FHIA 0.15
mmol p-IRAE TN, E=E TN, #id TLC
W2 JERIE#E7EJE I 0.1 mmol DBU, #4k&:45¢
P12 he B RPRFAE, R LER, S
19385 (V (PE): V (EA):V(DCM) = 20:1:1) 135 2,3-
AR IR 3.
1.2.5 FEUIREHEERAE

3-((3-2-AAR-2-TK £.58)-1-FR FEIRIRG -2- 38 ) IR
HE (3a) A R: 28.7 mg, 77K 89%, #H[H
& . THNMR (CDCls,400 MHz), §: 8.13 ~ 8.02 (m,
2H); 7.64 ~ 7.56 (m, 1H); 7.53 ~ 7.46 (m, 2H); 7.44 ~
7.35 (m, 2H); 7.25 ~ 7.14 (m, 2H); 4.34 (s, 2H); 3.66
(s, 3H); 3.09 (t, 2H, J = 7.4 Hz); 2.78 (d, 2H, J= 7.4
Hz). BCNMR (CDCl3,100 MHz), 6: 196.3, 172.9,
154.1, 153.8, 136.5, 133.3, 129.2, 128.7, 128.3, 123.7,
122.5, 119.2, 110.9, 108.7, 51.8, 33.7, 32.1, 22.0.
HRMS (ESI), SEMHE (HH5HAH) , CooHisO4Na®, m/z:
345.1097(345.1104) [M + Na]*.

3-((3-2-FAR-2- 2. 3h)-1- T FF g -2- 35 IR
ZIE (3b) WA 262 mg, F=&K 78%, i {hlH
A, THNMR (CDCl3,400 MHz) , d: 8.16 ~ 8.00 (m,
2H); 7.66 ~ 7.56 (m, 1H); 7.54 ~ 7.46 (m, 2H); 7.43 ~
7.33 (m, 2H); 7.25 ~ 7.12 (m, 2H); 4.34 (s, 2H); 4.12
(q, 2H, J = 7.1 Hz); 3.09 (t, 2H, J = 7.4 Hz); 2.75 (t,
2H, J = 7.4 Hz); 1.23 (t, 3H, J= 7.1 Hz). 3CNMR
(CDCl3,100 MHz), 6: 196.3, 172.5, 154.1, 154.0,
136.5, 133.3, 129.2, 128.7, 128.3, 123.7, 122.4, 119.2,
110.8, 108.6, 60.6, 33.8, 32.4, 22.0, 14.1. HRMS
(ESI), CaiH0OsNa®, SEJE C(iFHAE) , m/az
359.1254(359.1247)[M + Na]*.

3-((3-2-AAR-2-TK £.5)-1-FR FEIRIRG -2- 38 ) IR
g (3c) HIAM: 22.3 mg, F5FK 56%, A
&, "THNMR (CDCl;,400 MHz), ¢ :(dd, 2H, J = 8.4,
1.4 Hz); 7.64 ~ 7.57 (m, 1H); 7.54 ~ 7.46 (m, 2H);
7.45 ~ 7.38 (m, 2H); 7.38 ~ 7.26 (m, 5H); 7.26~ 7.15
(m, 2H); 5.12 (s, 2H); 4.31 (s, 2H); 3.13 (t, 2H, J =
73 Hz); 2.85 (t, 2H, J = 73 Hz). PCNMR



(CDCl3,100 MHz), 6: 196.3, 172.2, 154.0, 153.7,
136.5, 135.7, 133.3, 129.1, 128.6, 128.5, 128.3, 128.2,
128.1, 123.6, 122.4, 119.2, 110.8, 108.7, 66.4, 33.7,
32.3,22.0. HRMS (ESI), C26H204Na*, SZllfE (i1
HAE) |, m/z: 421.1410 (421.1415) [M + Na]*.
3-((3-2-(4- F AR FE 2K 3 )-2- AR 498 )-1- 2K Ik
R-2-35) WERHEE (3d) MIAR: 28.5 mg, =%
81%, B {a[E 1A, 'HNMR (CDCl;,400 MHz), §: 8.05
(d, 2H, J = 8.8 Hz); 7.39 (dd, 2H, J = 7.6, 1.4 Hz);
7.24 ~ 7.14 (m, 2H); 7.01 ~ 6.94 (m, 2H); 4.28 (s,
2H); 3.87 (s, 3H); 3.66 (s, 3H); 3.09 (t, 2H, J = 7.4
Hz); 2.77 (t, 2H, J = 7.4 Hz). *CNMR (CDCl;,100
MHz), 6: 194.8, 172.9, 163.6, 154.0, 153.7, 130.6,
129.6, 129.2, 123.6, 122.4, 119.3, 113.8, 110.8, 109.0,
55.5, 51.7, 33.4, 32.1, 22.0 . HRMS (ESI),
CoiHooOsNa®, =z Il {5 C i+ & H D) , miz
375.1203(375.1206)[M + Na]*.
3-((3-2-(3- =4 FH 8- 2- S8 AR 2 38 ) - 1- 2 Ff 1k g
2-5) IR G (3e) A 31.2 mg, 123 80%,
#AE{A, 'THNMR (CDCl,400 MHz), o: 8.32 (s,
1H); 8.25 (d, 1H, J = 7.8 Hz); 7.85 (d, 1H, J = 7.8
Hz); 7.64 (t, 1H, J = 7.8 Hz); 7.44 ~ 7.33 (m, 2H),
7.25 ~ 7.15 (m, 2H); 4.37 (s, 2H); 3.65 (s, 3H); 3.09
(t, 2H, J= 7.4 Hz); 2.78 (t, 2H, J = 7.4 Hz). *CNMR
(CDCl3,100 MHz), 0: 195.0, 172.8, 154.1, 154.0,
137.0, 131.5, 131.2, 129.7 (q, J = 3.7 Hz), 1294,
128.9, 125.2 (q, J= 3.9 Hz), 123.9, 122.6, 121.0 (q, J
= 246.4Hz), 119.1, 111.0, 108.2, 51.8, 34.0, 32.0,
22.0, '"FHNMR, (CDCl3,376 MHz), 6 : -62.8. HRMS
(ESI), C2iHy0OsNa*, SZWl{H (iF & AH) , m/z
413.0974(413.0971)[M + Na]*.
3-(3-(2-(F5-2-55)-2- 5K & Fk )-1- 2K I 1k i -2-
YN FEE 3D MAR: 24.5 mg, 7% 66%,
FOE K. 'THNMR (CDCLs,400 MHz), 6 :8.64 (s,
1H); 8.10 (dd, 1H, J = 8.6, 1.8 Hz); 8.00 (dd, 1H, J =
8.1, 1.4 Hz); 7.96 ~ 7.87 (m, 2H); 7.68 ~ 7.54 (m,
2H); 7.50 ~ 7.37 (m, 2H); 7.26 ~ 7.14 (m, 2H); 4.48
(s, 2H); 3.67 (s, 3H); 3.14 (t, 2H, J = 7.4 Hz); 2.80 (t,
2H, J = 7.4 Hz). CNMR (CDCl3,100 MHz), §:
196.2, 172.9, 154.1, 153.9, 135.6, 133.8, 132.5, 130.0,
129.6, 129.2, 128.6, 127.8, 126.9, 124.0, 123.7, 122.5,
119.3, 110.9, 108.9, 51.8, 33.8, 32.1, 22.0. HRMS

(ESI), CaaH2OsNa®, S E (F&EAEH) , mz
395.1254(395.1249)[M+Na]*.
3-(3-(2-(ME Wy -2-3)-2- S8 AK £ 3 )-1- 2K Ik g
2- BN H TS (3g) A A 30.2 mg, F=% 92%,
FE K, 'THNMR (CDCL,400 MHz,), o: 7.92 ~
7.84 (m, 1H); 7.70 ~ 7.61 (m, 1H); 7.49 ~ 7.33 (m,
2H); 7.25 ~ 7.12 (m, 3H); 4.26 (s, 2H); 3.66 (s, 3H);
3.13 (t, 2H, J = 7.4 Hz); 2.79 (t, 2H, J = 7.4 Hz).
I3CNMR (CDCl3,100 MHz), d: 189.2, 172.9, 154.0,
154.0, 143.5, 134.0, 132.3, 129.0, 128.2, 123.7, 122.5,
119.3, 110.8, 108.6, 51.8, 34.5, 32.1, 22.0. HRMS
(ESI), CisHi604SNa®, SZill{H (it &AH) , m/z
351.0662(351.0668)[M + Na]*.

3-(3-(2- 0T Ak )-1- 2K - R IR -2- 25 ) T R Y Plis
(3h) AR 22.2 mg, FEE 85%, H{A[E1A,
'HNMR (CDCls, 400 MHz), 6 :7.47 ~ 7.32 (m, 2H);
7.26 ~ 7.15 (m, 2H); 3.73 (s, 2H); 3.66 (s, 3H); 3.07
(t, 2H, J = 7.3 Hz); 2.78 (t, 2H, J = 7.3 Hz); 2.19 (s,
3H). 3CNMR (CDCl;,100 MHz), 6: 205.5, 172.7,
154.0, 153.8, 128.8, 123.8, 122.6, 119.0, 110.9, 108.6,
51.8, 388, 32.0, 29.1, 21.7 . HRMS (ESI),
CisHigOsNa™ |, 52 I EH (i 5 EH ) , mxz

283.0941(283.0950)[M + Na]*.

3-(6- FH 3 -3- (-5 AR 2- 0K 20 38)-1- 2K F ik i -2-
) NEHEE 3D A K: 20.8 mg, =% 62%,
{0 [H A& . 'THNMR (CDCl;,400 MHz), 6: 8.13 ~ 8.02
(m, 2H); 7.66 ~ 7.57 (m, 1H); 7.52 (dd, 2H, J = 8.4,
7.0 Hz); 7.37 ~ 7.28 (m, 2H); 7.17 (dd, 1H, J = 8.6,
2.0 Hz); 4.32 (s, 2H); 3.65 (s, 3H); 3.07 (t, 2H, J =
7.4 Hz); 276 (t, 2H, J = 7.4 Hz). 3CNMR
(CDCl3,100 MHz), d: 1958, 172.7, 155.5, 152.5,
136.4, 133.5, 130.7, 128.8, 128.3, 128.1, 123.9, 119.0,
111.8, 108.6, 51.8, 33.5, 32.0, 22.0. HRMS (ESI),
CaiH20OsNa®, =z Wl 5 i+ & H ) , mz
359.1254(359.1252)[M + Na]*.

3-(5-5-3-(2-FAAR 2K 4 5E)-1-ZK IR g -2- 38 )
R FEE (3)) MIA: 232 mg, 77F 65%, #M
[l & . 'THNMR (CDCl3,400 MHz), 6: 8.10 ~ 8.01 (m,
2H); 7.63 ~ 7.55 (m, 1H); 7.48 (dd, 2H, J = 8.4, 6.8
Hz); 7.26 ~ 7.18 (m, 2H); 7.04 ~ 6.97 (m, 1H); 4.31
(s, 2H); 3.66 (s, 3H); 3.07 (t, 2H, J = 7.4 Hz); 2.75 (t,
2H, J = 7.4 Hz); 2.43 (s, 3H). '3CNMR (CDCl;,100
MHz), 0:196.4, 172.9, 154.5, 153.1, 136.6, 133.9,



133.2, 128.7, 128.3, 126.6, 123.8, 118.7, 111.1, 108.5,
51.8, 33.9, 322, 220, 21.6 . HRMS (ESI),
CaoHi704CINa* , SZ W fH C ik HAH D , m/az
379.0708(379.0709)[M + Na]*»

2 ZR5®
2.1 MR
Ph

)
o
Ph B
+ B NINCOoMe 0 \
OH Solvent o
m,12h
32 ~CO,Me

1a 2a

Bl s 23-HUIRIERmEAL S & L

Fig.5 Synthesis of 2,3-Disubstituted Benzofuran

AR R R 1a 5 p-IRAAE SRR 2a
BRI AT BN IRIE 220K, FFLL 89 % 73 8
FERA R H PR A 2,3- BRI 3a.
2.2 AR

KBRS &) 1a BT 2a HEAT RIS
I o
221 BEAPSEH T I

WmE 1R, T, CRERER, H5k
X B IR SR HEAT 1, 4140 KoCO3. Cs2CO3
NaOH. KOH. DIPEA 1 DBU %, 1 K,COs fl
Cs2CO3 1B, A BELUREAGH] 2,3- ~HUIRIFIR
W 3a, FEELSBIWEI P 2,3- IR AR
IR 3a". 2443546 F NaOH Il KOH fERST, BEH2
3L 35%H1 21%45 2 H AR 3a. BE/EHET T
AN L, 2458 DBU FFRELL 68%(17 15
FIEFR Y 3a, B T HARGR T A5 AL E 4
FEER, PRI EL DBU AR A L IBSEEAT T~ — 20 5%
fi . }_

R 1 GEFPERGRE™
Tab.1 Screening of the type of base

Entrya Base Solvent Yield/%"
1 K,COs MeCN Trace
2 Cs,COs MeCN trace
3 NaOH MeCN 35
4 KOH MeCN 21
5 DIPEA MeCN 15
6 DBU MeCN 68

¥E: Unless otherwise stated, all reactions were performed with 0.1
mmol compound 1la, 0.15 mmol compound 2a, and base in 0.2 mmol (1.0
mL)MeCN at room temperature for 12 h; 1):Isolated yield.

222 GRS %
W# 2 P, i DBU fENUE, B

Ja XA ML AT 1 i, 140 Acetone. DMSO.
DMF. THF fil EtOH %%. @it seie st BRI, 1 H
MeCN BTN, 7249 3a 77 R (68%) fitiH .
BRItk 3% MeCN AE AR B LA FIET F—2F
i 126 o
K2 SRR
Tab.2 Screening of the type of solvent

Entrya Base Solvent Yield/%"
1 DBU MeCN 68
2 DBU Acetone 43
3 DBU DMSO 57
4 DBU DMF 62
5 DBU THF 46
6 DBU EtOH 37

VE: Unless otherwise stated, all reactions were performed with 0.1
mmol compound 1a, 0.15 mmol compound 2a, and 0.2 mmol DBU in the
1.0 mL specified solvent at room temperature for 12 h.1):Isolated yield.

2.2.3  REASER L

T I ANV R 1) 328, 0 E 1 LA DBU YR B
CHEVENTEFRINS, HFR™Y 3a )70 8= Rl ik 5|
68% o JE LI I SL I K B, 2 H] Cs2CO-E BRI ,
L 90% R A3 3 2,3- HUR AR H PRI 3a”.
HE— B LA Fe 2 8, 2,3-  HUAR AU 2R IR 3a"
£ DBU HIE ] T Befg s ey 2,3- BRI
MR 3a, HULFEALDBRE IR TR S SRR ) R
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Tab.3 Screening of the type of mixed bases

Entry Base 1 Base 2 Solvent Yield/%"
1 K,CO; DBU MeCN 51
2 Cs,CO3 DBU MeCN 89
3 NaOH DBU MeCN 21
4 KOH DBU MeCN 61

7£: Unless otherwise stated, all reactions were performed with 0.1
mmol compound la, 0.15 mmol compound 2a, and 0.2 mmol Cs,COj in
1.0 mL MeCN at room temperature. After the consumption of compound
la was detected by reaction monitoring, 0.1 mmol DBU was added and the
mixture was stirred for an additional 12 h. 1):Isolated yield.
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