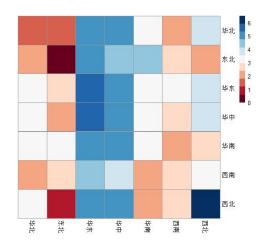
附表 1	城投债信用利差的描述性统计						
省份	均值	标准差	偏度	峰度	最小值	最大值	
北京	74.142	22.485	-0.246	2.056	23.840	122.080	
天津	174.919	92.287	0.867	2.256	66.250	436.160	
河北	160.146	63.619	0.346	1.891	48.940	309.620	
吉林	182.108	49.845	0.392	2.741	97.170	355.260	
上海	69.895	21.947	0.542	2.253	30.790	131.850	
江苏	122.481	38.317	-0.125	2.222	40.270	218.520	
浙江	92.026	23.738	0.217	2.219	42.450	159.240	
安徽	113.000	29.342	0.477	3.557	50.390	214.920	
福建	105.482	31.933	0.115	2.627	39.790	199.180	
山东	127.773	29.122	-0.450	2.361	58.990	194.520	
江西	117.541	22.974	0.485	3.017	73.070	202.670	
河南	117.067	22.224	0.086	2.824	67.050	187.060	
湖北	112.618	28.405	-0.284	2.525	45.050	176.200	
湖南	152.318	37.591	-0.427	2.114	73.550	237.010	
广东	73.004	22.765	-0.248	2.081	24.830	122.540	
广西	211.311	61.461	0.670	3.082	99.920	441.750	
重庆	129.916	25.576	-0.508	2.957	49.370	189.470	
四川	108.200	27.380	-0.014	2.114	48.180	174.060	
贵州	317.332	133.098	0.240	1.899	115.820	577.770	
云南	215.353	87.363	0.838	2.727	92.500	512.950	
陕西	135.598	28.223	1.148	4.161	87.710	274.040	
新疆	109.694	31.390	-0.038	3.084	33.540	206.240	


注: (1) 样本期间为 2017 年 1 月 3 日至 2022 年 12 月 30 日。(2) 城投债信用利差根据当期该省所有城投债个债信用利差 余额平均计算得到(个债信用利差=个债收益率—同期限国开债收益率),单位: bp (基点),1bp = 0.01%,来源: Wind 数据库。 (3) 数据频率为日度数据。

附图 1 相关系数分析

注: D_{ijv2} 、 D_{ijv6} 、 D_{ijv6} 0 分别为余额平均城投债利差网络中,省份 i 对省份 j 的债务风险溢出强度(方差分解预测期为 2 天、5 天、10 天)。 D_{ija2} 、 D_{ija5} 、 D_{ija10} 分别为算数平均城投债利差网络中,省份 i 对省份 j 的债务风险溢出强度(方差分解预测期为 2 天、5 天、10 天)。 D_{ija2} 、 D_{ija5} 、 D_{ija10} 分别为算数平均城投债利差网络中,省份 i 对省份 j 的债务风险溢出强度(方差分解预测期为 2 天、5 天、10 天)。 D_{ii} D_{ii}

附图 2 城投债信用风险的静态网络

注: 附图 2 画出风险溢出强度处于前 50%两两交互省份间的风险传导关系,箭头表示风险传导的方向。节点越大,风险输出能力越强。黑色节点为东部省份,红色节点为其它省份。

附图 3 全样本期间城投债信用风险传染热力图

注: 方差分解预测期为 2 天,样本期间为 2017 年 1 月 3 日至 2022 年 12 月 30 日,基于省际城投债信用利差(余额平均)指标构建风险传染网络。

附表 2

Pseudo.R²

地理集聚、宏观经济对信用风险传染的影响分析(分位数回归)

Panel A:	基于省会城市距离			•	·		
	省际城投债风险网络(余额平均)D _{ij}			省际城投债风险网络(算数平均)D _{i→j}			
	(1) 0.25 分位数	(2) 0.5 分位数	(3) 0.75 分位数	(4) 0.25 分位数	(5) 0.5 分位数	(6) 0.75 分位数	
Disij	-1.081***	-1.151***	-1.452***	-1.050***	-1.316***	-1.731***	
	(-12.470)	(-11.952)	(-14.625)	(-11.992)	(-13.823)	(-19.250)	
GDP_i	2.639***	2.626***	2.781***	2.546***	2.885***	3.056***	
	(5.608)	(5.024)	(5.162)	(5.359)	(5.584)	(6.263)	
GDP_j	1.394***	0.901*	1.025*	1.482***	0.999*	1.164**	
	(2.962)	(1.724)	(1.903)	(3.119)	(1.933)	(2.385)	
Vol_i	15.900***	11.175**	5.929	16.322***	11.250**	5.698	
	(3.195)	(2.021)	(1.041)	(3.248)	(2.058)	(1.104)	
Vol_j	-4.180	-0.574	-6.334	-1.872	-1.611	-6.560	
	(-0.840)	(-0.104)	(-1.111)	(-0.373)	(-0.295)	(-1.272)	
Rev_i	0.110	0.122	-0.088	0.474*	0.592*	0.091	
	(0.385)	(0.384)	(-0.269)	(1.649)	(1.892)	(0.308)	
Revj	-0.254	-0.413	-0.644**	-0.315	-0.419	-0.763**	
	(-0.894)	(-1.307)	(-1.976)	(-1.097)	(-1.339)	(-2.584)	
$Strud_{ij}$	-0.001***	-0.001**	-0.001***	-0.001**	-0.001**	-0.001**	
	(-2.670)	(-1.981)	(-2.665)	(-2.346)	(-2.456)	(-2.581)	
_cons	-32.911***	-22.776***	-14.086*	-38.587***	-33.702***	-17.897***	
	(-5.126)	(-3.194)	(-1.916)	(-5.953)	(-4.781)	(-2.689)	
N	484	484	484	484	484	484	

Panel B: 是否位于同一地理区域(基于 7 大地理区域分类)

0.241

0.174

	省际城投债风险网络(余额平均)D _{i→j}			省际城投债风险网络(算数平均)D _{i→j}			
	(1) 0.25 分位数	(2) 0.5 分位数	(3) 0.75 分位数	(4) 0.25 分位数	(5) 0.5 分位数	(6) 0.75 分位数	
Reg_{ij}	0.951***	1.298***	2.660***	1.017***	1.108***	3.013***	
	(2.968)	(3.787)	(4.192)	(3.500)	(2.872)	(4.157)	
GDP_i	2.816***	2.732***	3.477***	3.116***	2.812***	3.342***	
	(6.426)	(5.826)	(4.005)	(7.835)	(5.331)	(3.371)	
GDP_j	1.108**	1.409***	1.630*	1.584***	1.205**	1.997**	
	(2.529)	(3.006)	(1.877)	(3.985)	(2.285)	(2.015)	
Vol_i	18.864***	14.361***	10.049	17.182***	15.114***	11.182	
	(4.077)	(2.900)	(1.096)	(4.091)	(2.713)	(1.068)	
Vol_{j}	-1.014	2.005	-2.235	-0.006	0.291	-0.896	
	(-0.219)	(0.405)	(-0.244)	(-0.001)	(0.052)	(-0.086)	
Rev_i	0.189	0.300	0.161	0.444*	0.834***	0.638	
	(0.713)	(1.058)	(0.307)	(1.849)	(2.619)	(1.065)	
Rev_j	0.076	-0.412	-0.392	-0.176	-0.217	-0.285	
	(0.286)	(-1.455)	(-0.747)	(-0.733)	(-0.681)	(-0.476)	
$Strud_{ij}$	-0.001***	-0.002***	-0.002***	-0.002***	-0.002***	-0.002***	
	(-3.827)	(-4.106)	(-2.797)	(-4.559)	(-3.715)	(-2.589)	
_cons	-46.539***	-41.080***	-47.707***	-55.244***	-52.351***	-60.507***	

0.289

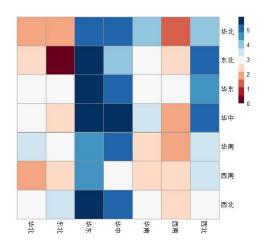
0.174

0.267

0.307

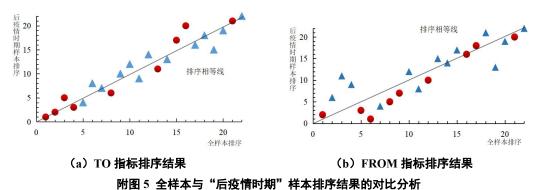
《统计研究》 王姝黛等: 城投债信用风险传染的地理集聚、路径演变与驱动机制(附件) 2023年3月

	(-7.920)	(-6.533)	(-4.097)	(-10.358)	(-7.398)	(-4.551)
N	484	484	484	484	484	484
Pseudo.R ²	0.141	0.170	0.144	0.138	0.191	0.158


注: (1) 方差分解预测期为 2 天。(2) *、**、***分别表示系数在 10%、5%、1%的置信水平上显著。括号内为 t 值。

附表 3

"后疫情时期"信用风险净溢出的排序分析


省份	TO_i	$FROM_i$	NET_i	省份	TO_i	$FROM_i$	NET_i
浙江	148.548	89.899	58.649	重庆	83.641	87.065	-3.424
福建	146.754	89.808	56.946	江西	73.560	82.409	-8.849
上海	130.550	89.312	41.238	四川	60.792	76.671	-15.879
安徽	123.746	89.649	34.097	贵州	15.059	38.739	-23.680
江苏	120.714	90.771	29.944	陕西	58.323	85.407	-27.084
北京	117.521	89.497	28.024	吉林	55.330	83.476	-28.146
新疆	116.471	89.131	27.339	广西	37.415	66.322	-28.907
湖北	111.396	88.825	22.572	山东	46.134	78.384	-32.251
河南	92.113	85.801	6.312	云南	31.068	70.886	-39.817
湖南	90.013	89.479	0.534	河北	22.877	67.308	-44.431
广东	86.115	88.622	-2.507	天津	25.783	76.461	-50.678

注: (1) 方差分解预测期为2天。(2) 基于省际城投债信用利差(余额平均)指标构建信用风险网络。(3) 样本期间为2020 年1月20日至2022年12月30日。

附图 4 "后疫情时期"城投债信用风险传染热力图

注: 方差分解预测期为 2 天,样本期间为 2020 年 1 月 20 日至 2022 年 12 月 30 日,基于省际城投债信用利差(余额平均)指标构建风险传染网络。

注: 方差分解预测期为 2 天, 全样本为 2017 年 1 月 3 日至 2022 年 12 月 30 日, "后疫情时期" 样本为 2020 年 1 月 20 日至

注: 万差分解換測期为 2 大,全样本为 2017 年 1 月 3 日全 2022 年 12 月 30 日,"后投情时期"样本为 2020 年 1 月 20 日全 2022 年 12 月 30 日,基于省际城投债信用利差(余额平均)指标构建风险传染网络。红色圆点为东部省份,蓝色三角为其它省份。