附录

附录 1.内点解的数学推导

效用函数为:
$$u = \theta(C_1^{\alpha_1} L_1^{1-\alpha_1})^{1-\frac{1}{\sigma}} + (1-\theta)(C_0^{\alpha_0} L_0^{1-\alpha_0})^{1-\frac{1}{\sigma}}$$
 (1)

预算约束为:
$$P_0C_0 + P_1C_1 + F_1 = W(1 - L_0 - L_1)$$
 (2)

消费者在满足预算约束条件时追求最大化效用,利用拉格朗日乘数法求解效用函数最大值,可得:

$$\begin{cases} F_{C_1} = \theta \alpha_1 (\frac{\sigma - 1}{\sigma}) C_1^{\alpha_1 (\frac{\sigma - 1}{\sigma}) - 1} L_1^{(1 - \alpha_1) (\frac{\sigma - 1}{\sigma})} + \lambda P_1 = 0 \dots \\ F_{C_0} = (1 - \theta) \alpha_0 (\frac{\sigma - 1}{\sigma}) C_0^{\alpha_0 (\frac{\sigma - 1}{\sigma}) - 1} L_0^{(1 - \alpha_0) (\frac{\sigma - 1}{\sigma})} + \lambda P_0 = 0 \dots \\ F_{L_1} = \theta (1 - \alpha_1) (\frac{\sigma - 1}{\sigma}) L_1^{(1 - \alpha_1) (\frac{\sigma - 1}{\sigma}) - 1} C_1^{\alpha_1 (\frac{\sigma - 1}{\sigma})} + \lambda W = 0 \dots \\ F_{L_0} = (1 - \theta) (1 - \alpha_0) (\frac{\sigma - 1}{\sigma}) L_0^{(1 - \alpha_0) (\frac{\sigma - 1}{\sigma}) - 1} C_0^{\alpha_0 (\frac{\sigma - 1}{\sigma})} + \lambda W = 0 \dots \\ F_{\lambda} = C_1 L_1 + F + C_0 L_0 + W (1 - L_1 - L_0) = 0 \dots \\ \end{cases}$$

$$(A1)$$

将 A1①式除以 A1③式,可得:

$$L_1 = \frac{(1 - \alpha_1)C_1 P_1}{\alpha_1 W} \tag{A2}$$

将 A1②式除以 A1④式,可得:

$$L_0 = \frac{(1 - \alpha_0)C_0 P_0}{\alpha_0 W}$$
 (A3)

将 A1③式除以 A1④式,可得:

$$1 = \frac{\theta(1-\alpha_1)L_1^{(1-\alpha_1)(\frac{\sigma-1}{\sigma})-1}C_1^{\alpha_1(\frac{\sigma-1}{\sigma})}}{(1-\theta)(1-\alpha_0)L_0^{(1-\alpha_0)(\frac{\sigma-1}{\sigma})-1}C_0^{\alpha_0(\frac{\sigma-1}{\sigma})}}$$
(A4)

将 A2 和 A3 代入 A4, 可得:

$$1 = \frac{\theta \left(1 - \alpha_{1}\right)^{\left(1 - \alpha_{1}\right)\left(\frac{\sigma - 1}{\sigma}\right)} P_{1}^{\left(1 - \alpha_{1}\right)\left(\frac{\sigma - 1}{\sigma}\right) - 1} C_{1}^{\frac{-1}{\sigma}} \left(\alpha_{0}W\right)^{\left(1 - \alpha_{0}\right)\left(\frac{\sigma - 1}{\sigma}\right) - 1}}{\left(1 - \theta\right)\left(1 - \alpha_{0}\right)^{\left(1 - \alpha_{0}\right)\left(\frac{\sigma - 1}{\sigma}\right)} P_{0}^{\left(1 - \alpha_{1}\right)\left(\frac{\sigma - 1}{\sigma}\right) - 1} C_{0}^{\frac{-1}{\sigma}} \left(\alpha_{1}W\right)^{\left(1 - \alpha_{1}\right)\left(\frac{\sigma - 1}{\sigma}\right) - 1}}$$
(A5)

将 A5 两边取 $-\sigma$ 次幂,可得:

$$\left(\frac{\theta}{1-\theta}\right)^{-\sigma} \frac{C_1}{C_0} \left[\frac{\left(\frac{P_1}{\alpha_1}\right)^{\alpha_1} \frac{W^{1-\alpha_1}}{\left(1-\alpha_1\right)^{1-\alpha_1}}}{\left(\frac{P_0}{\alpha_0}\right)^{\alpha_0} \frac{W^{1-\alpha_0}}{\left(1-\alpha_0\right)^{1-\alpha_0}}} \right]^{\sigma-1} \frac{P_1\alpha_0}{P_0\alpha_1} = 1$$
(A6)

这里令:

$$\left(\frac{\theta}{1-\theta}\right)^{-\sigma} \left[\frac{\left(\frac{P_1}{\alpha_1}\right)^{\alpha_1}}{\left(\frac{P_0}{\alpha_0}\right)^{\alpha_0}} \frac{W^{1-\alpha_1}}{\left(1-\alpha_0\right)^{1-\alpha_0}} \right]^{\sigma-1} = \Gamma$$
(A7)

那么 A6 就可以变化为:

$$\frac{C_1}{C_0} \frac{P_1 \alpha_0}{P_0 \alpha_1} \Gamma = 1 \tag{A8}$$

$$\frac{C_1 P_1}{\alpha_1} \Gamma = \frac{P_0 C_0}{\alpha_0} \tag{A9}$$

将 A2、A3 代入预算约束,可得:

$$P_{1}C_{1} + P_{0}C_{0} + F_{1} = W \left(1 - \frac{\left(1 - \alpha_{1}\right)C_{1}P_{1}}{\alpha_{1}W} - \frac{\left(1 - \alpha_{0}\right)C_{0}P_{0}}{\alpha_{0}W} \right) \tag{A10}$$

$$W - F_1 = \frac{C_1 P_1}{\alpha_1} + \frac{P_0 C_0}{\alpha_0} \tag{A11}$$

将 A9 代入 A11 式,可得:

$$C_1 = \frac{W - F_1}{(1 + \Gamma)} \times \frac{\alpha_1}{P_1} \tag{A12}$$

$$C_0 = \frac{W - F}{\left(1 + \frac{1}{\Gamma}\right)} \times \frac{\alpha_0}{P_0} \tag{A13}$$

根据 A2、A3,可得:

$$L_{1} = \frac{(1 - \alpha_{1})}{W} \times \frac{W - F_{1}}{1 + \Gamma}$$
(A14)

$$L_0 = \frac{(1 - \alpha_0)}{W} \times \frac{W - F_1}{1 + \frac{1}{\Gamma}}$$
 (A15)

由 A14 可得:

$$1 + \Gamma = \frac{1 - \alpha_1}{W} \times \frac{W - F_1}{L_1}$$

$$\Gamma = \frac{(1 - \frac{F_1}{W})(1 - \alpha_1) - L_1}{L_1}$$
(A16)

将 A7 代入 A16, 就得到文中 3 式:

$$\frac{(1-\alpha_1)(1-\frac{F_1}{W})-L_1}{L_1} = \left[\frac{(\frac{P_1}{\alpha_1})^{\alpha_1}}{(\frac{P_0}{\alpha_0})^{\alpha_0}} \frac{1}{(1-\alpha_1)^{1-\alpha_1}}\right]^{(\sigma-1)} W^{(\alpha_0-\alpha_1)(\sigma-1)} (\frac{1-\theta}{\theta})^{\sigma} \tag{A17}$$

由 A17 式可得:

$$\frac{(1-\alpha_1)(1-\frac{F_1}{W})-L_1}{L_1} = AW^{(\alpha_0-\alpha_1)(\sigma-1)}(\frac{1-\theta}{\theta})^{\sigma}$$
(A17)

其中,

$$A = \left[\frac{\left(\frac{P_1}{\alpha_1}\right)^{\alpha_1}}{\left(\frac{P_0}{\alpha_0}\right)^{\alpha_0}} \frac{1}{\left(1 - \alpha_1\right)^{1 - \alpha_1}} \right]^{(\sigma - 1)}$$

由于互联网商品价格为 0,从而 $\alpha_1=0$,另外固定的互联网接入费相对于总收入的占比是非常小的(本文根据计算得出约为 0.4%),从而可以假定 $\frac{F_1}{W}\approx 0$ 。再将 A17 式左右两边取自然对数,进而得到:

$$\ln\left[\frac{1-L_1}{L_1}\right] = \ln A + (\alpha_0 - \alpha_1)(\sigma - 1)\ln W + \sigma \ln\left(\frac{1-\theta}{\theta}\right)$$
(3)

(3)式左边表示非上网休闲时间与上网休闲时间的比例,lnA 对于不同个体来说是常数, $\alpha_1=0$, $\alpha_0=\frac{P_0C_0}{P_0C_0+WL_0}$,从而我们可以通过将上网休闲时间对总收入进行回归,进而估计出互联网商品和普通商品的消费替代弹性,利用人口统计特征来控制个体关于互联网商品相对于普通商品的重要程度对上网休闲时间的影响。具体回归方程可以表示为:

$$\ln(\frac{1 - Internettime(i)}{Internettime(i)}) = \beta_0 + \beta_1 \ln(Income(i)) + \beta_2 demographic(i) + \varepsilon_i$$
 (4)

$$\hat{\sigma} = \frac{\hat{\beta}_1}{\alpha_0} + 1 \tag{A18}$$

其中,A18 式为替代弹性估计式。

附录 2.公式(5)的数学推导

2.1 支出函数推导

对于商品 i ,定义联合柯布-道格拉斯复合消费 Y_i ,对于定义复合价格(含货币成本与时间成本) λ_i 。 根据效用函数与 A12-A15 可得:

$$Y_{1} = C_{1}^{\alpha_{1}} L_{1}^{1-\alpha_{1}} = \left(\frac{\alpha_{1}}{P_{1}}\right)^{\alpha_{1}} \left(\frac{1-\alpha_{1}}{W}\right)^{1-\alpha_{1}} \times \frac{W-F_{1}}{1+\Gamma}$$

$$Y_{0} = C_{0}^{\alpha_{0}} L_{0}^{1-\alpha_{0}} = \left(\frac{\alpha_{0}}{P_{0}}\right)^{\alpha_{1}} \left(\frac{1-\alpha_{0}}{W}\right)^{1-\alpha_{0}} \times \frac{W-F_{1}}{1+\frac{1}{\Gamma}}$$
(A19)

根据柯布道格拉斯函数性质,易知 $\dfrac{W-F_1}{1+\Gamma}$ 和 $\dfrac{W-F_1}{1+\dfrac{1}{\Gamma}}$ 分别为复合消费 Y_1 和 Y_0 的总支出。

从而,对应复合价格可得:

$$\lambda_{1} = \left(\frac{P_{1}}{\alpha_{1}}\right)^{\alpha_{1}} \left(\frac{W}{1-\alpha_{1}}\right)^{1-\alpha_{1}}
\lambda_{0} = \left(\frac{P_{0}}{\alpha_{0}}\right)^{\alpha_{0}} \left(\frac{W}{1-\alpha_{0}}\right)^{1-\alpha_{0}}$$
(A20)

复合消费 Y_1 和 Y_0 可表示为:

$$Y_{1} = \frac{W - F_{1}}{\lambda_{1}(1 + \Gamma)}$$

$$Y_{0} = \frac{W - F_{1}}{\lambda_{0}(1 + \frac{1}{\Gamma})}$$
(A21)

对应 C_1 、 C_0 、 Y_1 和 Y_0 可表示为:

$$C_{1} = \frac{\alpha_{1}\lambda_{1}Y_{1}}{P_{1}}, \quad C_{0} = \frac{\alpha_{0}\lambda_{0}Y_{0}}{P_{0}}$$

$$L_{1} = \frac{(1-\alpha_{1})\lambda_{1}Y_{1}}{W}, \quad L_{0} = \frac{(1-\alpha_{0})\lambda_{0}Y_{0}}{W}$$
(A22)

进而可知:

$$\frac{Y_1}{Y_0} = \frac{\lambda_0}{\lambda_1 \Gamma} \tag{A23}$$

由 A7 可得:

$$\left(\frac{\lambda_1}{\lambda_0}\right)^{\sigma-1} \left(\frac{1-\theta}{\theta}\right)^{\sigma} = \Gamma \tag{A24}$$

将 A24 代入 A23, 然后将 A23 取 $\frac{\sigma-1}{\sigma}$ 次幂,则可以得到:

$$\theta Y_1^{\frac{\sigma-1}{\sigma}} = (1-\theta) \frac{1}{\Gamma} Y_0^{\frac{\sigma-1}{\sigma}} \tag{A25}$$

在最优解处,效用函数可表示为:

$$u = \theta Y_1^{1 - 1/\sigma} + (1 - \theta) Y_0^{1 - 1/\sigma}$$
(A26)

将 A25 代入 A26, 可得:

$$u = \left(1 - \theta\right) \left(1 + \frac{1}{\Gamma}\right) Y_0^{1 - 1/\sigma} \tag{A27}$$

将 A21 代入 A27, 可得:

$$u = (1 - \theta) \left(1 + \frac{1}{\Gamma} \right)^{\frac{1}{\sigma}} \left(\frac{1}{\lambda_0} \right)^{1 - \frac{1}{\sigma}} (W - F_1)^{1 - \frac{1}{\sigma}}$$
(A28)

在最优解处,支出函数可表示为:

$$E(P_0, P_1, F_1, W, u \mid Y_1 > 0) = W - F_1 + F_1 \tag{A29}$$

根据 A28 替换 A29 中的 $W-F_1$, 可得:

$$E(P_0, P_1, F_1, W, u \mid Y_1 > 0) = F_1 + \frac{\lambda_0}{(1 + 1/\Gamma)^{\frac{1}{\sigma - 1}}} \left[\frac{u}{1 - \theta} \right]^{\frac{\sigma}{\sigma - 1}}$$
(A30)

当互联网不存在时, $F_{\rm l}=0$,此时 Γ 趋于正无穷,则有:

$$E(P_0, W, u \mid Y_1 = 0) = \lambda_0 \left(\frac{u}{1 - \theta}\right)^{\frac{\sigma}{\sigma - 1}}$$
(A31)

2.2 等价变换计算

在时间利用模型中,互联网产品消费者剩余的等价变换为需要给予消费者多少收入才能使其不享受互联网消费与享受互联网消费时实现的效用一样。于是我们将互联网产品存在时的效用(即 $u(P_0,P_1,F_1,W,u\,|\,Y_1>0)$)代入互联网产品不存在时的支出函数,并减去原有总支出W,即可得互联网消费带来的消费者剩余:

$$EV = E(P_0, W, u(P_0, P_1, F_1, W, u \mid Y_1 > 0) \mid Y_1 = 0) - W$$

$$= \lambda_0 \left(\frac{u}{1 - \theta}\right)^{\frac{\sigma}{\sigma - 1}} - W$$
(A32)

将存在互联网产品时的效用 $u = (1-\theta)\left(1+\frac{1}{\Gamma}\right)Y_0^{1-1/\sigma}$ 代入 A32,可得:

$$EV = \lambda_0 \left(\frac{\left(1 - \theta\right) \left(1 + \frac{1}{\Gamma}\right) Y_0^{1 - 1/\sigma}}{1 - \theta} \right)^{\frac{\sigma}{\sigma - 1}} - W$$

$$= \lambda_0 Y_0 \left(1 + \frac{1}{\Gamma}\right)^{\frac{\sigma}{\sigma - 1}} - W$$
(A33)

将
$$Y_0 = \frac{W - F_1}{\lambda_0 \left(1 + 1/\Gamma\right)}$$
代入A33,可得:

$$EV = (W - F_1) \left(1 + \frac{1}{\Gamma} \right)^{\frac{1}{\sigma - 1}} - W$$

$$= W \left[\left(1 + \frac{1}{\Gamma} \right)^{\frac{1}{\sigma - 1}} \left(1 - \frac{F_1}{W} \right) - 1 \right]$$
(A34)

由 A16 得到:

$$1 + \frac{1}{\Gamma} = \left(1 - \frac{L_1}{\left(1 - \frac{F_1}{W}\right)\left(1 - \alpha_1\right)}\right)^{-1} \tag{A35}$$

将 A34 代入 A33,又因为 $\alpha_{\rm l}=0$,可以得到文中公式 5:

$$EV = W \left(\left(1 - \frac{L_1}{1 - F_1 / W} \right)^{\frac{-1}{\sigma - 1}} \left(1 - F_1 / W \right) - 1 \right)$$
 (5)

附表:

附表 1

上网时间对总收入的回归结果

变量	(1)	(2)	(3)	(4)	(5)	(6)
log_income	0.02***	0.03***	0.02***	0.03***	-0.18***	-0.11***
	(6.28)	(8.07)	(6.36)	(6.62)	(-13.92)	(-8.40)
Education(小学		0.18***		0.20**		0.25
=1, 其他=0)		(2.66)		(2.13)		(1.05)
Education(初中		0.17***		0.13		-0.13
=1, 其他=0)		(2.61)		(1.43)		(-0.56)
education(高中		0.13**		0.08		-0.46**
=1, 其他=0)		(2.06)		(0.87)		(-1.98)
education (大专		0.09		0.10		-0.68***
=1, 其他=0)		(1.36)		(1.08)		(-2.91)
education(本科		0.14**		0.16*		-0.69***
=1, 其他=0)		(2.09)		(1.68)		(-2.95)
education(研究生		0.25***		0.21*		-0.66***
=1, 其他=0)		(2.78)		(1.76)		(-2.69)
age		0.04***		0.02***		-0.01
		(9.15)		(4.69)		(-0.61)
age2		-0.00***		-0.00***		0.00
		(-9.30)		(-3.05)		(1.54)
gender		-0.20***		-0.22***		-0.00
		(-13.89)		(-12.24)		(-0.14)
urban		-0.02		0.01		-0.13***
		(-1.13)		(0.55)		(-3.32)
marital		-0.35***		-0.36***		-0.10**
		(-11.90)		(-10.24)		(-2.17)
race		0.01		-0.02		-0.08
		(0.18)		(-0.39)		(-1.28)
retire		-0.03		-0.12***		-0.05
		(-0.79)		(-2.65)		(-0.52)
student		1.11***		1.13**		1.62***
		(3.19)		(2.25)		(50.71)
employment		0.27***		0.31***		
		(9.03)		(8.14)		
Constant	2.21***	1.15***	2.47***	1.55***	3.00***	3.02***
	(110.48)	(10.77)	(101.51)	(10.88)	(28.15)	(9.62)
Observations	22,311	20,851	13,943	12,858	8,989	8,884

注:回归系数下方括号里是 t 值; ***、**和*表示结果在 1%、5%和 10%水平上显著。